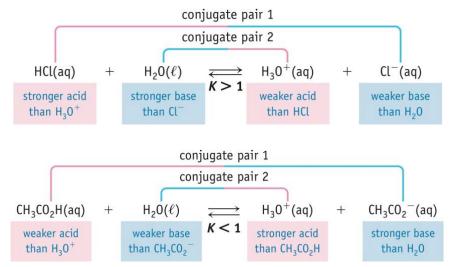
Acid/Base Strengths

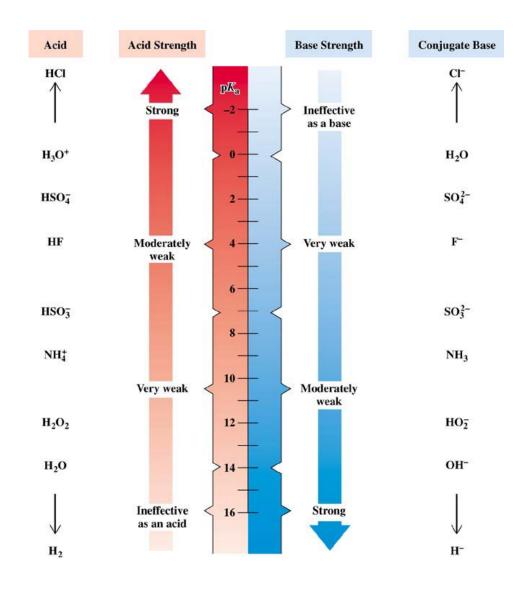
acid strength – determined by extent of reaction of acid with water to form $H_3O^+(aq)$, or the extent of its ionization or dissociation, as shown by the magnitude of its equilibrium constant, K_a – then for any hydrogen-containing compound, HA

base strength – (aside from Group I and II hydroxides) determined by extent of reaction of base with water to form $OH^{-}(aq)$, or extent of its ionization, as shown by the magnitude of its equilibrium constant, K_h – then for any base B:

B:(aq)
$$+ H_2O(I) <=> OH^-(aq) + BH^+(aq)$$

EQUATION FOR BASICITY FOR ANY B:


EQUILIBRIUM CONSTANT


Conjugate Acid/Base Pairs

The conjugate base of a weak acid is a weak base. The weaker the acid, the stronger the base. However, if one member of a conjugate pair is weak, so is its conjugate.

The relation between K_a for an acid and K_b for its conjugate base in aqueous solution is $K_w = K_a \times K_b$.

When a strong acid (or base) is added to a weak base (or acid), they react nearly completely.

Water and the pH Scale

water autoionization: $2 H_2O(l) \ll H_3O^+(aq) + OH^-(aq)$

$$K_{\rm W} = [{\rm H_3O^+}][{\rm OH^-}] = 1.01 \times 10^{-14} \, ({\rm at} \, 25^{\circ}{\rm C})$$

 $K_{\rm w}$ equilibrium constant which depends upon temperature.

pH is temperature dependent

condition	concentrations	pH (only at 25°C)
acidic	$[H_3O^+] > [OH^-]$	pH < 7
neutral	$[H_3O^+] = [OH^-]$	pH = 7
basic	$[H_3O^+] < [OH^-]$	pH > 7

Temperature Dependence of $K_{\!\scriptscriptstyle W}$		
Temperature (°C)	K _w	
0	0.114×10^{-14}	
10	0.292×10^{-14}	
20	0.681×10^{-14}	
25	1.01×10^{-14}	
30	1.47×10^{-14}	
40	2.92×10^{-14}	
50	5.47×10^{-14}	
60	9.61×10^{-14}	

significant figures for logarithms:

3 significant digits 3 decimal places $\log 1.00 \times 10^{-3} = 3.000$

Systematic Treatment of Equilibrium

GOAL - account for the concentration of all species present in a solution once equilibrium has been reached. The equations to do this derive from

- 1. charge balance solution must be electrically neutral
- 2. material balance conservation of matter; what happens to initial concentrations
- 3. equilibrium expressions and their equilibrium constants

Systematic Treatment of Equilibrium – Charge Balance

Charge balance is an algebraic statement of electroneutrality. sum of + charges = sum of - charges

EX 1. Write the charge balance for a solution containing only the following ions:

$$[H^+]$$
 + $[Na^+]$ + 2 $[Ba^{2+}]$ + $[Ag^+]$ = $[OH^-]$ + 3 $[PO_4^{3-}]$ + 2 $[SO_4^{2-}]$

Systematic Treatment of Equilibrium – Charge Balance

salt

EX 2. Write the charge balance for a solution containing $(NH_4)_3PO_4$. Be sure to consider all possible equilibrium reactions.

NH₄⁺ is an acid but its equilibrium reaction produces its neutral conjugate base, NH₃; PO₄³⁻ is a base whose equilibrium reactions produce

$$PO_4^{3-} + H_2O \iff OH^- + HPO_4^{2-}$$

 $HPO_4^{2-} + H_2O \iff OH^- + H_2PO_4^-$
 $H_2PO_4^- + H_2O \iff OH^- + H_3PO_4$

in aqueous solution autoionization of water must always be considered: $H_2O + H_2O <=> H_3O^+ + OH^-$

$$[NH_4^+] + [H^+] = [OH^-] + [H_2PO_4^-] + 2[HPO_4^{2-}] + 3[PO_4^{3-}]$$

Molarity and Formality

These two types of concentration are identical for a species which does not dissociate into ions in solution or does not react with water to produce ions

Molarity is the concentration of the species that is actually present in solution such as 1.0 M Cl⁻.

Consider a species which forms ions in solution such as acetic acid, CH_3COOH . You might try to place exactly 1.0 mole in a liter of water to form a 1.0 M solution but the solution will have partially dissociated into CH_3COO^- . Such a solution is 1.0 F = $[CH_3COOH]$ + $[CH_3COO^-]$. So **formality** represents the concentration of the different "pieces" that acetic acid forms in solution or the concentration originally placed in water (before dissociation).

Harris uses formality

Systematic Treatment of Equilibrium – Mass Balance

EX 3. What is the mass balance equation for a solution prepared by adding 0.100 moles of ammonia to 1.000 L?

NH₃ is a weak base and reacts with water:

$$NH_3(aq) + H_2O(I) <=> OH^-(aq) + NH_4^+(aq)$$

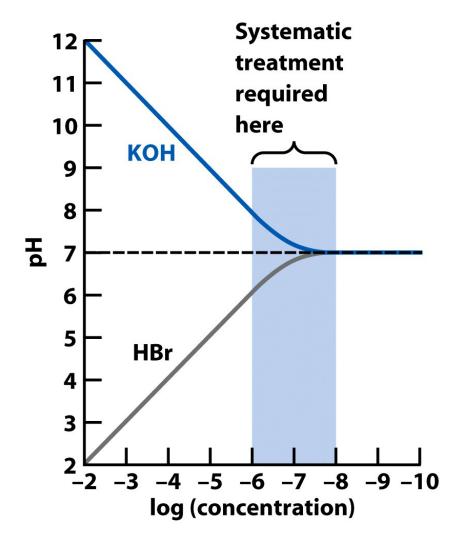
so the mass balance is

$$0.100 F = [NH_3]_0 = [NH_3] + [NH_4^+]$$

Systematic Treatment of Equilibrium

equations needed for solution for unknown

General approach includes


- 1. write down the pertinent chemical reactions and their equilibrium constant expressions
- 2. write down all species present in solution according to #1
- 3. set up the charge balance equation (the solution must be electrically neutral so the number of positive charges = the number of negative charges)
- 4. apply the material balance equation (conservation of matter) may be more than one
- 5. are there enough equations to solve for the unknowns?

Systematic Treatment – Dilute Strong Acid

```
EX 4. What is the pH of a 1.0 \times 10^{-8} M solution of HBr?
1. reactions, K(HBr \rightarrow H^+ + Br^-)
                                                             2. species: H<sup>+</sup>, OH<sup>-</sup>, Br<sup>-</sup>
    H_2O \iff H^+ + OH^- \quad K_W = [H^+][OH^-]
3. charge balance: [H^+] = [OH^-] + [Br^-] 4. mass balance: [Br^-] = 1.0 \times 10^{-8}
     substitute for [OH<sup>-</sup>]
                                                                            substitute for [Br-]
               K_{w} = [H^{+}][OH^{-}] = [H^{+}]\{[H^{+}] - [Br^{-}]\} = [H^{+}]^{2} - [H^{+}][Br^{-}]
                                         quadratic: [H^{+}]^{2} - [H^{+}][Br^{-}] - K_{w} = 0
               [H^+] = \{ -10^{-8} \pm \sqrt{(10^{-8})^2 + 4(1.01 \times 10^{-14})} \} / 2
                      = 1.05 \times 10^{-8} M
                      => pH = 6.978 => 6.98
```

Systematic Treatment – Dilute Strong Acid/Base

For dilute strong acids or bases a systematic treatment is only required when the concentration is between $\sim 10^{-8}$ and 10^{-6} M. Above 10^{-8} one cannot practically make such a dilute solution and below 10^{-6} H⁺ from $K_{\rm w}$ is too small a contribution.

FOR LAB THIS WEEK

The acidity of an aqueous solution of CH₃COOH is determined by its reaction with water:

$$CH_3COOH(aq) + H_2O(I) <=> H_3O^+(aq) + CH_3COO^-(aq)$$

and quantitatively measured by its acid dissociation constant, K_a

$$K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]}$$

where all concentrations are obtained at equilibrium.

1. reactions $H_2O \iff H^+ + OH^- \quad K_W = [H^+][OH^-]$

```
1. reactions
H_2O \iff H^+ + OH^- \quad K_W = [H^+][OH^-]

CH_3COOH + H_2O \iff H_3O^+ + CH_3COO^-
K_A = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]}
```

- 1. reactions 2. $H_2O \iff H^+ + OH^- \quad K_W = [H^+][OH^-]$ $CH_3COOH + H_2O \iff H_3O^+ + CH_3COO^ K_A = \frac{[H_3O^+][CH_3COO^-]}{[CH_3OOH]}$
- 2. species: CH₃COOH, CH₃COO⁻, H⁺, OH⁻

- 1. reactions $H_2O \iff H^+ + OH^- \quad K_w = [H^+][OH^-]$ 3. cb: $[H^+] = [OH^-] + [CH_3COO^-]$ $CH_3COOH + H_2O \iff H_3O^+ + CH_3COO^-$
- 2. species: CH₃COOH, CH₃COO⁻, H⁺, OH⁻

```
1. reactions
H_2O \iff H^+ + OH^- \quad K_w = [H^+][OH^-] 3. cb: [H^+] = [OH^-] + [CH_3COO^-]
CH_3COOH + H_2O <=> H_3O^+ + CH_3COO^-
```

- 2. species: CH₃COOH, CH₃COO-, H+, OH-
- 4. mb: $0.01 F = [CH_3COOH] + [CH_3COO^{-}]$

```
1. reactions 2. species: CH_3COOH, CH_3COO^-, H^+, OH^- H_2O <=> H^+ + OH^- K_W = [H^+][OH^-] 3. cb: [H^+] = [OH^-] + [CH_3COO^-] 4. mb: 0.01 F = [CH_3COOH] + [CH_3COO^-] CH<sub>3</sub>COOH + H<sub>2</sub>O <=> H<sub>3</sub>O<sup>+</sup> + CH<sub>3</sub>COO<sup>-</sup> K_A = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]} = \frac{[H^+][CH_3COO^-]}{0.01 - [CH_3COO^-]}
```

```
1. reactions 2. species: CH_3COOH, CH_3COO^-, H^+, OH^- H_2O \iff H^+ + OH^- K_w = [H^+][OH^-] 3. cb: [H^+] = [OH^-] + [CH_3COO^-] 4. mb: 0.01 F = [CH_3COOH] + [CH_3COO^-] CH<sub>3</sub>COOH + H<sub>2</sub>O \iff H<sub>3</sub>O<sup>+</sup> + CH<sub>3</sub>COO<sup>-</sup> = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]} = \frac{[H^+][CH_3COO^-]}{0.01 - [CH_3COO^-]} = \frac{[H^+]\{[H^+] - [OH^-]\}}{0.01 - \{[H^+] - [OH^-]\}}
```

```
2. species: CH<sub>3</sub>COOH, CH<sub>3</sub>COO-, H+, OH-
1. reactions
H_2O \iff H^+ + OH^- \quad K_w = [H^+][OH^-] 3. cb: [H^+] = [OH^-] + [CH_3COO^-]
                                                          4. mb: 0.01 F = [CH_3COOH] + [CH_3COO^{-}]
CH_3COOH + H_2O \iff H_3O^+ + CH_3COO^-
K_{a} = \frac{[H_{3}O^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]} = \frac{[H^{+}][CH_{3}COO^{-}]}{0.01 - [CH_{3}COO^{-}]}
                                          = \frac{[H^+]\{[H^+] - [OH^-]\}}{[H^+] - [OH^-]}
                                                0.01 - \{ [H^+] - [OH^-] \}
                                          = \frac{[H^+]\{[H^+] - K_W/[H^+]\}}{0.01 - \{[H^+] - K_W/[H^+]\}}
```

```
2. species: CH<sub>3</sub>COOH, CH<sub>3</sub>COO-, H+, OH-
1. reactions
H_2O \iff H^+ + OH^- \quad K_w = [H^+][OH^-] 3. cb: [H^+] = [OH^-] + [CH_3COO^-]
                                                            4. mb: 0.01 F = [CH_3COOH] + [CH_3COO^{-}]
CH_3COOH + H_2O \iff H_3O^+ + CH_3COO^-
K_{a} = \frac{[H_{3}O^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]} = \frac{[H^{+}][CH_{3}COO^{-}]}{0.01 - [CH_{3}COO^{-}]}
                                           = \frac{[H^+]\{[H^+] - [OH^-]\}}{[H^+] + [OH^-]}
                                                                                         CH<sub>3</sub>COOH is an acid so
                                                 0.01 - \{ [H^+] - [OH^-] \}
                                                                                                [OH^{-}] << [H^{+}]
                                           = \frac{[H^+] \{ [H^+] - K_W / [H^+] \}}{0.01 - \{ [H^+] - K_W / [H^+] \}}
```

```
2. species: CH<sub>3</sub>COOH, CH<sub>3</sub>COO-, H+, OH-
1. reactions
H_2O \iff H^+ + OH^- \quad K_w = [H^+][OH^-] 3. cb: [H^+] = [OH^-] + [CH_3COO^-]
                                                          4. mb: 0.01 F = [CH_3COOH] + [CH_3COO^{-}]
CH_3COOH + H_2O \iff H_3O^+ + CH_3COO^-
K_{a} = \frac{[H_{3}O^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]} = \frac{[H^{+}][CH_{3}COO^{-}]}{0.01 - [CH_{3}COO^{-}]}
                                         = \frac{[H^+]\{[H^+] - [OH^-]\}}{[H^+] + [OH^-]}
                                                                                      CH<sub>3</sub>COOH is an acid so
                                                0.01 - { [H+] - [OH-] }
                                                                                             [OH<sup>-</sup>] << [H<sup>+</sup>]
                                              [H^{+}]\{[H^{+}] - \frac{K_{W}}{[H^{+}]}\}
                                              0.01 - { [H+] - K<sub>*</sub>/ [H+] }
                                             0.01 - [H+]
```

```
2. species: CH<sub>3</sub>COOH, CH<sub>3</sub>COO-, H+, OH-
1. reactions
H_2O \iff H^+ + OH^- \quad K_w = [H^+][OH^-] 3. cb: [H^+] = [OH^-] + [CH_3COO^-]
                                                             4. mb: 0.01 F = [CH_3COOH] + [CH_3COO^{-}]
CH_3COOH + H_2O <=> H_3O^+ + CH_3COO^-
K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm CH}_3{\rm COO}^-]}{[{\rm CH}_3{\rm COOH}]} = \frac{[{\rm H}^+][{\rm CH}_3{\rm COO}^-]}{0.01 - [{\rm CH}_3{\rm COO}^-]}
                                            = \frac{[H^+]\{[H^+] - [OH^-]\}}{[H^+]}
                                                                                           CH<sub>3</sub>COOH is an acid so
                                                  0.01 - { [H+] - [OH-] }
                                                                                                  [OH^{-}] << [H^{+}]
                                                [H^{+}]\{[H^{+}] - \frac{K_{W}}{[H^{+}]}\}
                                                0.01 - { [H+] - K<sub>v</sub>/ [H+] }
                                           = \frac{[H^+]^2}{0.01 - [H^+]} \implies K = \frac{x^2}{F - x}
```

```
2. species: CH<sub>3</sub>COOH, CH<sub>3</sub>COO-, H+, OH-
1. reactions
H_2O \iff H^+ + OH^- \quad K_w = [H^+][OH^-] 3. cb: [H^+] = [OH^-] + [CH_3COO^-]
                                                             4. mb: 0.01 F = [CH_3COOH] + [CH_3COO^{-}]
CH_3COOH + H_2O \iff H_3O^+ + CH_3COO^-
K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm CH}_3{\rm COO}^-]}{[{\rm CH}_3{\rm COOH}]} = \frac{[{\rm H}^+][{\rm CH}_3{\rm COO}^-]}{0.01 - [{\rm CH}_3{\rm COO}^-]}
                                            = \frac{[H^+]\{[H^+] - [OH^-]\}}{[H^+] + [OH^-]}
                                                                                           CH<sub>3</sub>COOH is an acid so
                                                  0.01 - \{ [H^+] - [OH^-] \}
                                                                                                   [OH^{-}] << [H^{+}]
                                                 [H^{+}]\{[H^{+}] - \frac{K_{W}}{[H^{+}]}\}
       COMPARE
                                                  0.01 - \{ [H^+] - K_{\text{o}} / [H^+] \}
            WITH
                                            = \frac{[H^+]^2}{0.01 - [H^+]} \implies K = \frac{x^2}{F - x}
       ICE TABLE
```

HA(aq) + H₂O(I) <=> H₃O⁺(aq) + A⁻(aq)
0.050 M
$$\sim$$
 0 0
C $-x$ + x + x
E $0.050 - x$ x x

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} = \frac{x^{2}}{0.050 - x}$$
quadratic: $x^{2} + K_{a} x - 0.050 K_{a} = 0$

EX 6. What is the pH of 0.050 M solution of a weak acid, $K_a = 1.59 \times 10^{-10}$? $HA(aq) + H_2O(I) <=> H_3O^+(aq) + A^-(aq)$ 0.050 M ~ 0 0 + X + X- X 0.050 - xquadratic: $x^2 + K_a x - 0.050 K_a = 0$ $X = \{-1.59 \times 10^{-10} \pm \sqrt{[(1.59 \times 10^{-10})^2 + 4(0.050)(1.59 \times 10^{-10})]} \} / 2$ $(2.819 \times 10^{-6}) / 0.050$ $= 2.819 \times 10^{-6} M$ 1% (5%) Rule < 1% => pH = 5.5498 => **5.55**

 $x = \sqrt{(0.050 K_a)}$